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A pulse system, described by a non-linear functional-differential equation, and an “equivalent” continuous non-linear system, 
obtained from the initial system by replacing the pulse modulator by its static characteristic is considered. It is shown that, for 
a sufficiently high pulse frequency, asymptotic stability of a state of equilibrium of the pulse system arises from the stability of 
the equivalent system in the first approximation. 0 2003 Elsevier Science Ltd. All rights reserved. 

A wide class of non-linear pulse systems is described by the following functional-differential equation 

f = f(x) + bt,, 5 = Mo, CT = c*x (1) 

where b and c are constant real m-dimensional column vectors, the asterisk denotes transposition, f(x) 
is a continuous m-dimensional vector function and M is a non-linear operator, according to which to 
each function o(t), continuous in [0, +-) there corresponds a function c(t) and a sequence t&z = 0, 
1,2 , . . . ; to = 0), possessing the following properties: 

positive constants v. and T exist, for which, for all n, the following limit holds 

voTIt,+,-t,IT (2) 

the function E,(t) is piecewise-continuous in each interval [t,, tn+l] and does not change sign in it. 
t,, depends only on the values of o(r) when z < to and E,(t) depends only on the values of a(z) when 

z 4 t, 
a continuous function q(o) exists such that for each y1 we obtain t;, E [tn, tn + t), for which the mean 

value of the nth pulse 

(3) 

satisfies the relation 

vn = CPWLN (4) 

The majority of known forms of pulse modulation (pulse-width modulation, frequency modulation, 
amplitude modulation, combined modulation, etc. [l-4]) satisfies the above conditions, in which case 
q(o) is the static characteristic of the pulse modulator (i.e. the dependence of the mean value of the 
pulse (3) on the modulating signal o, assuming the latter to be constant). 

The simplest example is pulse-width modulation of the first kind (PWN-I), for which tn = nT 

5(t) = 
i 

singo( nTlt<nT+z, 
(5) 

0, nT+T,It<(n+ 1)T 

%I = TF(b(nT)l) 

F(h) is a continuous function, non-decreasing in (0, +-), satisfying the conditions F(0) = 0, 
0 < F(A) G 1 when h > 0. Pulse-width modulation of the second kind (PWN-2) differs from PWN-1 
in that r,, is calculated not from the last formula of (5) but is the first positive root of the equation 
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?I = qow + Q)l) 
if such exists in [0, T], and r,, = T otherwise. The essential difference between PWN-1 and PWM-2 is 
the fact that whereas in PWM-1 rn is a continuous functional of o(t) for all a(t) E CIO, +-), in the 
case of PWM-2 this functional is not continuous in the whole space C[O, +-). It is obvious that for 
both forms of pulse-width modulation condition (4) is satisfied when q(o) = F( ]o])signo, and in the 
case of PWM-1 ?,, = nT, while in the case of PWM-2 i, = nT + 2,. 

Together with (1) we will consider the system of ordinary differential equations 

ir = f(x) + bcp(o), d = c*x (6) 

which we will call the “equivalent” system. Since the stability of continuous system (6) has been 
investigated much more than the stability of pulse system (1) we are interested in the hypothesis that, 
for a sufficiently high pulse frequency (for sufficiently small T), the stability of system (1) follows from 
the stability of system (6). If the question is stability as a whole, this hypothesis has been disproved in 
[5,6] and, using the example of a first-order system with PWM-1, it has been shown that, although the 
equivalent system is stable as a whole for any values of the parameters, a pulse system can have an 
infinite set of periodic modes of operation, but not as high as the pulse frequency was. In this paper 
we prove that this hypothesis holds, if we are dealing with asymptotic stability (“in the small”). If the 
system of the first approximation [7] is asymptotically stable for continuous system (6), the state of 
equilibrium x = 0 of pulse system (1) will be asymptotically stable. 

We will assume that in systems (1) and (6) 

f(x) = Ax+a(x) (7) 

where A is a constant m x m matrix, while the vector function a(x) satisfies the condition 

Ila(xMlxll -j 0, llxll -+ 0 (8) 

Suppose o(O) = 0, the function (g(o) is twice continuously differentiable in certain neighbourhood 
of the point o = 0, and the following inequalities are satisfied 

kP’(~)l 5 19 Icp”(@l s ‘p+ (9 
Suppose h- and h, are the minimum and maximum eigenvalues of the matrix H, being a solution of 

Lyapunov’s equation 

B*H+HB = -1; B = A+ kbc*; k = q’(O) (10) 

We introduce the following notation 

c,(Q) = ~l,c*All*, 
lc* 

c*(O) = @(,K[ + II@)* + 81*~* 
lc* 

d,(O) = 
41*llCll* + 2c,(0)T2 

1 - (4f2]]c]12 + 2c,(O))? 

d*(O) = [c,(O) + c2(0)d,(O)lT2 

P = ;[llb112d2(0) + IlAb - kKbll*d,V’N 

]]*]I is the Euclidean norm of a vector or a matrix, and K = -c*b, q = c*Ab. 

Theorem. Suppose conditions (8) and (9) are satisfied, the matrix B is a Hurwitz matrix, and T is so 
small that the following inequalities hold 
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41*qp + lK*lT)* + 5rZ] < 1 (11) 

4&d < 1 

Nl T + ~Tllcll(llbll + TllAbll)exp(lIAlIT) c 1 
(12) 

(13) 
Then the state of equilibrium x = 0 of system (1) is asymptotically stable. 

Remark. When checking the conditions of the theorem it is useful to bear the following inequalities in 
mind [8] 

where vk(B* + B) and uk(B*B) are eigenvalues of the matrices B* + B and B*B, respectively. 

Proof. We will use the averaging method [4,9]. We introduce the functions 

u(r) = u,, r E [t,, t,. 119 u(t) = [ (A) - u(Wldh It 
0 

Making the LiCnad replacement in system (1) 

x = y+bu 

we obtain, by virtue of Eq. (7), the equations 

f = Ay+a(y+bu)+bu+Abu 

Q= c*y - KU 

Equation (15) can be represented in the form 

f = By+g 

g = g, + g2 + g3 

g, = b( v _ cp) + (Ab - klcb)u, g, = b(cp - koh & = a(y + bu) 

(14) 

(15) 

(16) 

(17) 

Consider Lyapunov’s function V(y) = y*Hy, where the positive-definite matrix H is the solution of 
Eq. (10). The derivative with respect to time of V, taken by virtue of system (15), has the form 

\i = -Ilyll* + L, + L, + L,; Li = 2(Hy, gi), i = 1,2,3 (18) 

The following inequalities are obvious 

Lllull* s V 5 h+llyl12, llHyll* 5 h+v (19) 
In view of the second inequality of (19) we have 

141 I EA+V+ fllg*ll’ I&h+V+ t(u-(~)*]]b]]*+ $*]]Ab-krb]]* (20) 

where E is a positive parameter, the choice of which will be discussed below. 
We will first assume that condition (9) is satisfied for all cr. In view of this condition and of Eq. (16) 

we have the limit 

h’(O) - kd 5 (9+02/2 5 cP+(llcll*lly~~* + K*u*) 
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Hence, according to the second inequality of (19), the following relation holds 

IL,/ 5 2$%+llbll [Ilcl12Vk + ~~~~~ 

Finally, from the second inequality of (19) we obtain the inequality 

(L,( 5 @3l4 

From this inequality and the second inequality of (19) we obtain the limit 

I&I 5 &+P(Y + bu)[V + NIYII~ + lIbl12~2)l 
where 

MY + bu) = IMy + b~Mly + WI 
By virtue of relations (18)-(22) we have the inequality 

3 I [ &A+ - $ + K+j.i(y + bu) 
+ 1 V + &Jbll*( u - (P>~ + /Ab -k~b~~2u2] + 

+ 2& ~llbll~+llcl12V3’* 
i 

+ llbllq+K2U2fi+ NY + W[llYl12 + llbI12~21 

Using property (9) and Eq (16) we obtain 

‘“+ I ‘,+ I 
a G j (V(t)-(p(fJ(t)))2dr512 j lo(i,)-(3(t)12dfI 

1” f ” 
fn + I 

5 212 j [IC*y(i,) -C*y(t)12 + K2)u(i,) -u(f)12]df 

‘, 

(21) 

(22) 

(23) 

It is well known [4, 91, that for any absolutely continuous function c(t) with < E L2[a, p] and any 
& E [a, p] the Wirtinger inequality holds, namely 

Substituting expression (15) into this inequality and using the limit [4,9] 

I40 s TINOI 
we obtain a chain of relations 

2 2Lt1 I nt I 
&L-E 

x2 
j Ic*Ay - KU + K,U + c*al*dr + 81*~*T* j v*(t)dr I 

‘” ‘” 

f “+I 
5: 

J{ @f[llc*AIIllyll + (1~1 + IK~IT)I~)( + llcllllall]* + 812~*T2v2 
n2 

dr I 

f ” 

I ~[ile*All’liy~~* + (1~1 + IK~[T)*u* + Ilcll*((all*] + 81*~*T*v* dr 

(24) 
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We will assume that 

Then 

MY + bu) < 6, 

IIW + bu)ll* s 26f(llyll* + Ilbll*~*) 

and the limit obtained for @ can be represented in the form 

Q,<c (6 )T2Y+c -1 I (6 )T2X 2 1 
where 

‘n = I ‘,+ I 
Y = j Ily(t)l12dr, x = j &)dr 

‘” 1” 

(25) 

(26) 

c*(&,) = 
241* 
,[llc*All* + 2~:llcl121 

c*(q) = 24”2,(lrl + lK,lT)* + 26;llb(12~~c(~2~2~] + 81*1c* 
A2 

We will estimate X in terms of Y. The following inequalities are obtained from relations (9) and (25) 

Icp(o)l 5 Ilc*y - KUI, (9*(a) s 21*(1lc11*11y(1* + K27G2) 

Since v = cp + (U - cp), we have 

u* I 2tp2 + 2( 2) + cp)* I 4121jc)~*1(y~1* + 41*~*T*u* + 2( u- (P)* 

Hence the following relation holds 

x I41*(cJ~*Y + 41*lc*Tzx + 2@ 

Estimating the right-hand side of this inequality and using inequality (26) we arrive at the limit 

x5 [4~21)Cl12 + 2C@,$]Y+ [41*K2T2 + 2c,(s,)?]X (27) 

If the coefficient of X on the right-hand side of this inequality is less than unity (which will be the case 
for sufficiently small 6i in view of assumption (11)) we obtain the following relation from limit (27) 

X<d,(WY, d,(6,) = 41*11c1/* + 2c,(6,)T2 

1 - [41*K* + 2c,(&,)]? 
(28) 

From relation (26) and (28) we obtain the inequality 

@5d,@,X 4(5*) = rc,(61)+C*(61)d1(61)lTZ P-9 

Consider the region D = {y : V(y) < S*}. In this region, according to limit (23) and (24), the following 
relation holds 

vi-v(6,6,)V+F (30) 

vt& 6,) = ; - ~1, - ~&+llbll~+llcll*~ - &+a, + 

F = tllbll*(r+ cp)* + 5 IlAb -ktcbll*u* + 2T*&+((b~l<p+tc*~*~ + 26+6,[lly11* + ?(lbll*u*] 
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In view of relations (28) and (29) we have the limit 

‘” + I f” + I 
1 Fdr Id&t?, 6,) 1 Vdr 

‘” ‘II 

2T2 
d,(& 6,) = $$bl12d2(6,) + $IAb-kicbl\*d,(G,)+ - 

+ 2T2~llbll~+K2W(~,) + Z&+6, + 2$-+~1T211bl12d,(6,)] 

From relations (30) and (31) we obtain the inequalities 
I “+I 

V(Y(G + 1 1) - WY(~,,)) I -h(6,F,) j V(y(t))dt 
‘” 

x(6 6,) = ‘466,) - d,(6,6,) 

Summing these inequalities over PZ from 0 to N - 1, we obtain the relation 

IN 
V(Y(~,V)) + A(6 $11 V(y(t))dtI V(y(0)) 

0 

We require that h(0, 0) > 0. We have 

2 

h(O,O) = ~(0, 0) - d,(O, 0) = ;-Eh++ 
+ 

Hence, the relation h(0, 0) > 0 is equivalent to the inequality 

hzc2 - E + T2ph+ < 0 

which, in view of condition (12) is satisfied when 

(31) 

(32) 

E- c E < E,, E* = (1 + dl - 4&T2)l(2h;) 

It is’obvious that u(8, 6i) > 0 for sufficiently small 6 and 6r. It follows from inequality (32) that 
y(t,) E D for all n ify(0) E D. 

It can be shown that y(t) E D for all t > 0 if the quantity Ily(O) 11 is sufficiently small. Since 
Icp(o)l S flol, we have 

[%,I s ~~~k)~ s Ml% + 4~lIqzlTv 6, = ,E~~+,Ill~Wll 

Hence, in view of condition (13) we obtain the limit 

lunl 5 d,6,, d, = lllcll/( 1 - ~IKIT) 

Hence, in inequality (25) 
lim 6, = 0 

6, -a0 

Integrating Eq. (15), we obtain the representation 

Y(f) = ew(A(r - t,,))y(t,,) + 

(33) 

(34) 

+ exp(A(t-h)){a(y(k)+ bu(h))+ bv(h)+Abu(h)}dh I 
‘” 
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Hence, for t,, c t G t,, + i, by virtue of limit (23) and the first inequality of (19), we have the limit 

6,s exp(llAllT)~~ + t&s 
s = {(llbll + llAbllT)d, + (1 + IlbllTd4)~,)exp(llAllT) 

(35) 

If 

from inequality (35) we have the limit 

and consequently y(t) E D for sufficiently small 11 y(0) 11. I n view of condition (13) and property (34), 
inequality (36) is satisfied for sufficiently small 6. Since x(0) = y(0) and, by virtue of relations (14), (24) 
and (33) 

ma IMt)ll 5 M 1 + Id T&I 
IE Ir,,t,+,l 

the Lyapunov stability of the equilibrium state x = 0 is proved. 
We will show that 11 x(t) II +Owhent+ += if Ilx(O)ll is sufficiently small. According to relation 

(32), Ily(t) II E &[O, +-). Since, by virtue of Eq. (15), the quantity [Ii(t) II is uniformly bounded with 
respect to t, we have II y(t) II -0 as t + + 00. Then, in view of relations (14), (24) and (33) II x(t) II -a 0 
as t - +=. And the theorem is proved with the additional assumption that conditions (9) are satisfied 
when - < o < +=. It can be shown that this assumption is unnecessary. Suppose conditions (9) are 
satisfied when I CJ I G o*. We will denote by cp*(o) the function which is doubly continuously differentiable 
and satisfies condition (9) for all o E (--, +-), and is identical with q(o) when I o 1 < cr*. We will 
determine the operator M*, which mass o(t) into c*(t) and {t;} as follows. Suppose I b(t) I < o* when 
0 6 t c t* and I o(t,) I = o*. When t G t* we have c*(t) = c(t) and t,* = t,, when t,, 6 t*. Suppose 

N = maxn 
I,SI* 

We then put tz + i = t,* + T when n 3 N and c.+(t) = q*(a(t,*)) when t,* G t < t,*+ i. It is obvious 
that for n > N property (4) is satisfied when fz = t,*. Suppose x,(t), which satisfies the condition 
x*(O) = x(O), is the solution of system (l), in which the operator M is replaced by M,. Then, in view 
of what is proved above, I c*x*(t) I < CT* for all t > 0 if the quantity Ix(O)1 is sufficiently small. 
Consequently, in this solution M is identical with M, and x(t) = x*(t). Hence I c*x(t) 1 c (T* for all t > 
0, and the assumption that condition (9) holds for all o E (-- , +-) can be removed. The theorem is 
proved. 
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